
GRADED TRANSFORMERS: A SYMBOLIC-GEOMETRIC

APPROACH TO STRUCTURED LEARNING

TONY SHASKA

To my parents!

This work is for them—unbroken, unbowed.

Abstract. Transformers are highly effective for sequence modeling, yet they

struggle to capture hierarchical structure without extensive training, limit-

ing both efficiency and interpretability. We introduce the Graded Trans-
former, a novel architecture that integrates the dynamic learning capabilities

of transformers with the algebraic inductive biases of Graded Neural Networks

(GNNs). The core mechanism is a grading transformation Gw,λ, parame-
terized by a grading tuple and scaling factor, which prioritizes features ac-

cording to structural importance. This enables the model to better handle
hierarchical tasks across domains such as algebraic geometry (e.g., polynomial

systems), physics (e.g., turbulent flows), natural language processing (e.g.,

dependency parsing), and biological sequence analysis (e.g., genomic variant
prediction). We formalize the model, analyze its architecture, and prove key

properties—including universal approximation, attention rank enhancement,

reduced sample complexity, and robustness to noise. A graded loss function
supports effective training and deployment. This framework offers a principled

approach to interpretable and efficient sequence modeling across structured

scientific and linguistic domains.

1. Introduction

Sequence modeling underpins modern machine learning, enabling breakthroughs
in natural language processing (NLP), time-series analysis, and biological sequence
analysis by capturing long-range dependencies across tokens. The transformer ar-
chitecture has revolutionized this field through self-attention, dynamically priori-
tizing token interactions to achieve state-of-the-art performance across tasks like
machine translation, physical simulations, and genomic analysis; see [32]. However,
transformers face significant challenges with hierarchical or graded data structures,
prevalent in domains such as algebraic geometry (e.g., polynomial degrees of vary-
ing importance), physics (e.g., multi-scale phenomena with dominant energy levels),
NLP (e.g., syntactic heads in parse trees), and biology (e.g., genetic sequences with
critical regulatory regions). Their unstructured attention mechanisms require ex-
tensive training data to uncover domain-specific patterns, leading to high sample
complexity, increased computational costs, and limited interpretability when hier-
archical relationships are known a priori; see [36] for details.

Efforts to address these limitations, such as structured attention mechanisms and
graph neural networks, often introduce relational biases at the cost of transformer
flexibility or necessitate complex preprocessing as in [32]. Graded Neural Networks
(GNNs), introduced in [21], offer a compelling alternative, embedding algebraic bi-
ases into neural architectures to prioritize features based on domain knowledge; see

1

2 TONY SHASKA

[15] for further details. Grounded in graded vector spaces, GNNs assign numerical
grades to features, enabling static prioritization that enhances efficiency and inter-
pretability for tasks like photonic signal processing or genetic sequence analysis and
many other applications in mathematical research.

This paper introduces the Graded Transformer, a novel extension that synergizes
the dynamic, context-aware learning of transformers with the static, algebraically
motivated biases of GNNs. By incorporating grading transformations

Gw,λ = diag(λq0 , . . . , λqd−1)

(cf. Definition 2.2), the Graded Transformer embeds hierarchical priors into se-
quence modeling, emphasizing critical features or positions without relying solely
on data-driven attention. This approach pursues three primary objectives:

(1) Feature Prioritization: Highlighting significant features, such as high-
degree polynomial terms in algebraic geometry, key phrases in NLP, or
regulatory regions in genomics, to reduce dependence on large datasets.

(2) Computational Efficiency: Leveraging structural priors to lower sample
complexity, enabling faster convergence for hierarchical tasks like physical
system modeling or low-resource language processing.

(3) Interpretability: Encoding domain knowledge transparently via grading
tuples, making the model’s behavior predictable and explainable, particu-
larly for scientific applications.

The Graded Transformer is uniquely suited to domains with intrinsic hierarchical
structures, offering a versatile framework for applications in algebraic geometry,
physics, NLP, biological sequence analysis, and cross-domain transfer learning. The
paper is structured to develop this framework comprehensively.

Section 2 establishes the algebraic foundations of graded vector spaces and
GNNs, formalizing feature prioritization mechanisms.

Section 4 defines the Graded Transformer, proving its universal approximation
(Thm. 4.6), attention rank enhancement (Prop. 4.7), and robustness properties.
Section 5 details the architecture, integrating grading across inputs, positional en-
codings, attention, feed-forward layers, and outputs, with stability guarantees.

Section 6 explores training and optimization strategies, ensuring practical appli-
cability via graded loss functions. Section 7 delineates domain-specific applications,
from polynomial systems to genomic sequences.

Section 8 synthesizes contributions and outlines future directions, including em-
pirical validation and architectural extensions. This introduction frames the moti-
vation and significance of the Graded Transformer, paving the way for a rigorous
exploration of its theoretical and practical advancements.

Throughout this paper we assume familiarity with graded vector spaces and
neural networks in the level of [15]. By F we denote a field, V a vector space over
F, and x ∈ V a column vector.

2. Preliminaries

This section lays the mathematical groundwork for the Graded Transformer
by introducing graded vector spaces and Graded Neural Networks (GNNs), which
extend the framework of artificial neural networks on graded vector spaces [15].

GRADED TRANSFORMERS 3

2.1. Graded Vector Spaces. A graded vector space equips subspaces with nu-
merical grades, enabling differential scaling of components to reflect their relative
importance. This algebraic structure underpins the Graded Transformer by provid-
ing a mechanism to prioritize features in machine learning tasks, such as high-degree
terms in algebraic geometry or critical tokens in natural language processing.

Definition 2.1 (Graded Vector Space). Let F be a field, and let V be a vector
space over F with basis B = {e0, . . . , ed−1}. A graded vector space is a direct
sum decomposition

V =

d−1⊕
i=0

Vi,

where Vi = Fei is the one-dimensional subspace spanned by ei, assigned a grade
qi ∈ R. The grades form the grading tuple w = (q0, . . . , qd−1). A vector x ∈ V is
expressed as

x =

d−1∑
i=0

xiei, xi ∈ F,

with the component xiei ∈ Vi having grade qi.

In neural network applications, we set F = R, and real-valued grades qi allow
continuous prioritization of features, such as high-frequency components in photonic
signals [15]. Unlike algebraic settings, where grades are often integers (e.g., graded
rings [14]), real grades enhance flexibility for machine learning.

The grading tuple induces a linear transformation that scales vector components
by their grades, formalizing feature prioritization in the Graded Transformer.

Definition 2.2 (Grading Transformation). Let V =
⊕d−1

i=0 Rei be a graded vector
space over R with grading tuple w = (q0, . . . , qd−1), and let λ > 0. The grading
transformation is the linear operator Gw,λ : V → V , represented in the basis

B = {ei}d−1
i=0 by the diagonal matrix

Gw,λ = diag(λq0 , . . . , λqd−1).

For a vector x = [x0, . . . , xd−1]
t ∈ V ,

Gw,λ(x) = (λq0x0, . . . , λ
qd−1xd−1).

To study the properties of Gw,λ, we employ standard tools from linear algebra.
For a vector x ∈ Rd, the Euclidean norm is

∥x∥2 =

√√√√d−1∑
i=0

x2
i .

For a linear operator A : Rd → Rd, the spectral norm is

∥A∥2 = sup
x̸=0

∥Ax∥2
∥x∥2

,

the largest singular value of A. For a diagonal matrix A = diag(a0, . . . , ad−1), this
is ∥A∥2 = maxi |ai|. The spectral norm bounds the operator’s scaling effect, crucial
for numerical stability in neural networks. A mapping f : Rd → Rd is Lipschitz
continuous with constant L ≥ 0 if

∥f(x)− f(y)∥2 ≤ L∥x− y∥2

4 TONY SHASKA

for all x,y ∈ Rd, where the smallest such L is the Lipschitz constant. Lipschitz
continuity ensures controlled sensitivity to input changes, vital for robust sequence
modeling.

Lemma 2.3. Let qmax denote the maximum of weights q0, . . . , qd−1. The grading
transformation Gw,λ satisfies:

i) Invertibility: For λ > 0, Gw,λ is invertible.
ii) Scaling: For µ ∈ R,

Gw,λ(µx) = µ ·Gw,λ(x).

iii) Norm Bound: For x ∈ Rd, assuming λ > 1 and qi ≥ 0,

∥Gw,λ(x)∥2 ≤ λqmax · ∥x∥2.

iv) Spectral Norm: The eigenvalues of Gw,λ are λqi , with spectral norm ∥Gw,λ∥2 =
λqmax .

v) Lipschitz Continuity: The mapping

x 7→ Gw,λ(x)

is Lipschitz continuous with constant λqmax .

Proof. i) Since Gw,λ = diag(λq0 , . . . , λqd−1) and λ > 0, each λqi > 0. The inverse is

G−1
w,λ = diag(λ−q0 , . . . , λ−qd−1),

satisfying Gw,λG
−1
w,λ = I.

ii) For µ ∈ R, we have

Gw,λ(µx) = (λq0(µx0), . . . , λ
qd−1(µxd−1)) = µGw,λ(x).

iii) Compute ∥Gw,λ(x)∥2 as follows

∥Gw,λ(x)∥2 =

√√√√d−1∑
i=0

(λqixi)2 =

√√√√d−1∑
i=0

λ2qix2
i .

For λ > 1 and qi ≥ 0, λqi ≤ λqmax , so

d−1∑
i=0

λ2qix2
i ≤ λ2qmax

d−1∑
i=0

x2
i = λ2qmax∥x∥22.

Thus, ∥Gw,λ(x)∥2 ≤ λqmax∥x∥2.
iv) As Gw,λ is diagonal, its eigenvalues are λqi . The spectral norm is

∥Gw,λ∥2 = max
i

|λqi | = λqmax ,

since λqi > 0 for all i = 0, . . . , d− 1.
v) For x,y ∈ Rd,

∥Gw,λ(x)−Gw,λ(y)∥2 = ∥Gw,λ(x− y)∥2 ≤ λqmax∥x− y∥2,

by part iii, confirming the Lipschitz constant. □

GRADED TRANSFORMERS 5

2.2. Graded Neural Networks. Graded Neural Networks (GNNs) extend tradi-
tional neural networks by embedding graded vector spaces, introducing algebraic
biases to prioritize features based on domain knowledge. Introduced in [21], this
framework addresses the challenge of modeling hierarchical data, reducing sample
complexity and enhancing interpretability for tasks such as algebraic geometry and
sequence processing, paving the way for the Graded Transformer.

Definition 2.4 (Graded Neural Network). A Graded Neural Network (GNN)
is a neural network whose input space, hidden layers, or output space are graded
vector spaces over R.

For an input x ∈ Rd, a GNN layer applies a grading transformation Gw,λ, with
grading tuple w = (q0, . . . , qd−1) and λ > 0, via

y = σ(WGw,λ(x) + b),

where W ∈ Rm×d is a weight matrix, b ∈ Rm is a bias, and σ : R → R is an
activation function (e.g., ReLU) applied element-wise.

Alternatively, grading may be applied post-activation, as

y = Gw′,λ′σ(Wx+ b),

with distinct grading tuple w′ and scalar λ′ > 0. In multi-layer GNNs, each layer
may use unique wl, λl.

Graded neural networks were first defined in [21]. We now establish stability
properties of GNN layers, leveraging the grading transformation’s boundedness
from Lem. 2.3.

Lemma 2.5 (Lipschitz Continuity of GNN Layer). Let

f(x) = σ(WGw,λ(x) + b)

be a GNN layer, where σ is Lipschitz continuous with constant Lσ, and ∥W∥2
denotes the spectral norm of W . Then f is Lipschitz continuous with constant at
most Lσ∥W∥2λqmax .

Proof. For x,y ∈ Rd, compute

∥f(x)− f(y)∥2 = ∥σ(WGw,λ(x) + b)− σ(WGw,λ(y) + b)∥2.

Since σ is Lipschitz with constant Lσ,

∥σ(WGw,λ(x) + b)− σ(WGw,λ(y) + b)∥2 ≤ Lσ∥WGw,λ(x)−WGw,λ(y)∥2.

The operator norm yields

∥WGw,λ(x)−WGw,λ(y)∥2 = ∥WGw,λ(x− y)∥2 ≤ ∥W∥2∥Gw,λ(x− y)∥2.

By Lem. 2.3 (part iii), assuming λ > 1 and qi ≥ 0,

∥Gw,λ(x− y)∥2 ≤ λqmax∥x− y∥2.

Combining these, we obtain

∥f(x)− f(y)∥2 ≤ Lσ∥W∥2λqmax∥x− y∥2,

confirming the Lipschitz constant. □

6 TONY SHASKA

Proposition 2.6 (Multi-Layer GNN Stability). A multi-layer GNN with L layers,
each defined by fl(x) = σl(WlGwl,λl

x + bl), is Lipschitz continuous with constant
at most

L∏
l=1

Lσl
∥Wl∥2λ

ql,max

l ,

where ql,max = maxi=0,...,d−1 ql,i.

Proof. Let f = fL ◦ · · · ◦ f1 be the composition of the L layers. By Lem. 2.5,
each layer fl is Lipschitz continuous with constant Lσl

∥Wl∥2λ
ql,max

l . For inputs

x,y ∈ Rd, the Lipschitz property of compositions gives

∥f(x)− f(y)∥2 ≤
L∏

l=1

∥fl(zl−1)− fl(z
′
l−1)∥2 ≤

L∏
l=1

Lσl
∥Wl∥2λ

ql,max

l ∥x− y∥2,

where zl = fl ◦· · ·◦f1(x), z′l = fl ◦· · ·◦f1(y), and the product follows from chaining
the Lipschitz constants. □

Next example illustrates how a GNN could process a photonic signal, such as
the intensity of an optical field in communication or imaging systems; see [13] for
some of the fundamentals of photonics.

Example 2.7. Let x ∈ Rd represent the signal in the frequency domain, obtained
via a discrete Fourier transform, where xi is the amplitude of the i-th frequency
component, i = 0, . . . , d− 1.

In tasks like signal classification (e.g., identifying modulation types) or denoising
(e.g., enhancing optical images), high-frequency components often encode critical
features, such as rapid modulations or edges, but are prone to noise; see [12] for
further details.

Consider a GNN layer

y = σ(WGw,λx+ b),

with grading tuple w = (q0, . . . , qd−1), qi = ci, c > 0, and λ > 1. The grading
transformation

Gw,λx = (λq0x0, . . . , λ
qd−1xd−1)

amplifies higher frequencies.
For instance, if d = 3, x = [1, 0.5, 0.1], c = 0.1, λ = 2, then

Gw,λx ≈ [1, 0.535, 0.116],

emphasizing the highest frequency. This pre-emphasis simplifies the weight matrix
W ’s role, as critical features are scaled prior to learning. By Lem. 2.5, the layer’s
stability ensures robust prioritization, enhancing efficiency for frequency-dependent
tasks; see [1, 5] for further details.

The algebraic structure of GNNs, combining static grading transformations with
dynamic neural network learning, provides a robust framework for hierarchical fea-
ture prioritization. The stability guarantees of Lem. 2.5 and Prop. 2.6 enable GNNs
to serve as a foundation for the Graded Transformer’s context-aware sequence mod-
eling, as developed next.

GRADED TRANSFORMERS 7

3. Transformers

Let V = {1, 2, . . . , |V |} be a finite vocabulary of tokens, with |V | ∈ N. For d ∈ N,
let Rd be the embedding space for token representations. Define V n as the set of
sequences of length n over V , and let:

Sin =

nmax⋃
n=1

V n, Sout =

mmax⋃
m=1

V m,

be the spaces of input and output sequences, where nmax,mmax ∈ N are maximum
lengths. Denote Matm,n(R) as the set of m × n matrices with real entries. A
sequence (t1, . . . , tn) ∈ V n is represented as a matrix in Matn,d(R) after embedding
and positional encoding, as defined below.

A transformer is a function:

Tθ : Sin → Sout,

parameterized by a collection of learnable parameters θ, mapping an input sequence
t = (t1, . . . , tn) ∈ V n to an output sequence s = (s1, . . . , sm) ∈ V m, with m ≤
mmax determined by the generation process. The parameters θ include embedding
matrices, attention weights, feed-forward weights, and normalization parameters,
specified in each component.

The transformer comprises three main stages: input embedding with positional
encoding, an encoder, and an autoregressive decoder. The architecture of a trans-
former is displayed below.

Input
t ∈ V n

Emb
X ∈ W

Encoded
Z ∈ W

Output
Y<t ∈ U

Decoded
Zdec,t ∈ U

Probs
Pt ∈ ∆|V |−1

Token
st ∈ V

Emb + PE Enθ

DcθsfSelect

Append

Encoder

Decoder

Figure 1. Transformer architecture mapping t ∈ V n to s ∈ V m,
where W = Matn,d(R), U = Matt,d(R).

3.1. Input Embedding and Positional Encoding. Define the embedding ma-
trix We ∈ Mat|V |,d(R). For a token ti ∈ V , its embedding is:

xi = We · onehot(ti) ∈ Rd,

where onehot(ti) ∈ {0, 1}|V | has a 1 at index ti.

8 TONY SHASKA

To incorporate positional information, define the positional encoding function

PE : {1, . . . , nmax} → Rd

given by

PE(i)k =

{
sin

(
i

10000k/d

)
if k is even,

cos
(

i
10000(k−1)/d

)
if k is odd,

for k = 0, . . . , d − 1. For an input sequence t = (t1, . . . , tn), the embedded input
matrix is:

X = [x1 + PE(1), . . . ,xn + PE(n)]T ∈ Matn,d(R),
where the rows are xi + PE(i).

3.2. Encoder. The encoder is a function:

Enθ : Matn,d(R) → Matn,d(R),
transforming X into a contextualized representation Z = Enθ(X). It consists of
L ∈ N layers, each applying multi-head self-attention, a feed-forward network,
residual connections, and layer normalization.

Let Matm,n(R) denote the vector space of m × n matrices with real entries,
and Matn(R) = Matn,n(R). For a matrix M = [ai,j] ∈ Matm,n(R), the softmax
function is defined as:

sf : Matm,n(R) →

P ∈ Matm,n(R) | pi,j ≥ 0,

n∑
j=1

pi,j = 1 for all i

 ,

sf(M)i,j =
exp(ai,j)∑n
k=1 exp(ai,k)

.

This function is well-defined, differentiable, and normalizes each row into a proba-
bility distribution.

Definition 3.1 (Multi-Head Self-Attention). Let h ∈ N be the number of attention
heads, and dk = d/h ∈ N. For layer l = 1, . . . , L, head i = 1, . . . , h, define
parameter matrices WQ,l,i,WK,l,i,WV,l,i ∈ Matd,dk

(R). For X ∈ Matn,d(R):
Qi = XWQ,l,i, Ki = XWK,l,i, Vi = XWV,l,i ∈ Matn,dk

(R).
The attention for head i is:

Al,i(X) = sf

(
QiK

T
i√

dk

)
Vi ∈ Matn,dk

(R).

The multi-head attention is:

Mhl(X) = Concat(Al,1(X), . . . , Al,h(X))WO,l ∈ Matn,d(R),
with WO,l ∈ Mathdk,d(R).

Definition 3.2 (Feed-Forward Network). The feed-forward network

FFNl : Matn,d(R) → Matn,d(R)

is applied row-wise. For a row z ∈ Rd:

FFNl(z) = W2,l · ReLU(W1,lz+ b1,l) + b2,l,

where W1,l ∈ Matd,df
(R), W2,l ∈ Matdf ,d(R), b1,l ∈ Rdf , b2,l ∈ Rd, df ∈ N, and

ReLU(x) = max(0, x).

GRADED TRANSFORMERS 9

Definition 3.3 (Layer Normalization). Layer normalization

(1) Ln : Matn,d(R) → Matn,d(R)
is applied row-wise. For a row z ∈ Rd:

Ln(z) =
z− µ√
σ2 + ϵ

· γ + β,

where

µ =
1

d

d∑
k=1

zk, σ2 =
1

d

d∑
k=1

(zk − µ)2,

ϵ > 0, and γ,β ∈ Rd.

The l-th encoder layer is:

EncLayerl(X) = Ln(X ′ + FFNl(X
′)), X ′ = Ln(X +Mhl(X)).

The encoder is the composition:

Enθ(X) = EncLayerL ◦ EncLayerL−1 ◦ · · · ◦ EncLayer1(X).

3.3. Decoder. The decoder is a function:

Dcθ : Matt,d(R)×Matn,d(R) → Matt,d(R),
taking Y<t ∈ Matt,d(R) (current output sequence) and Z ∈ Matn,d(R) (encoder
output) to produce Zdec = Dcθ(Y<t, Z). It consists of L layers, each with masked
self-attention, cross-attention, and a feed-forward network.

Definition 3.4 (Masked Multi-Head Self-Attention). For Y ∈ Matt,d(R), compute:

Qi = YWQ,l,i, Ki = YWK,l,i, Vi = YWV,l,i ∈ Matt,dk
(R),

with WQ,l,i,WK,l,i,WV,l,i ∈ Matd,dk
(R). The masked attention is:

Al,i(Y) = sf

(
QiK

T
i√

dk
·M

)
Vi,

where M ∈ Matt,t(R), Mi,j = 1 if j ≤ i, and Mi,j = −∞ if j > i (implemented via
masking before softmax). Then:

Mmhl(Y) = Concat(Al,1(Y), . . . , Al,h(Y))WO,l ∈ Matt,d(R).

Definition 3.5 (Cross-Attention). For Y ∈ Matt,d(R), Z ∈ Matn,d(R):
Qi = YWQ,l,i ∈ Matt,dk

(R), Ki = ZWK,l,i, Vi = ZWV,l,i ∈ Matn,dk
(R),

Al,i(Y, Z) = sf

(
QiK

T
i√

dk

)
Vi ∈ Matt,dk

(R),

Cal(Y,Z) = Concat(Al,1(Y,Z), . . . , Al,h(Y, Z))WO,l ∈ Matt,d(R).

The l-th decoder layer is:

DecLayerl(Y, Z) = Ln(Y ′′ + FFNl(Y
′′)),

where:
Y ′ = Ln(Y +Mmhl(Y)), Y ′′ = Ln(Y ′ +Cal(Y

′, Z)).

The decoder is:

Dcθ(Y, Z) = DecLayerL ◦ · · · ◦DecLayer1(Y, Z).

10 TONY SHASKA

3.4. Autoregressive Generation. For an input t ∈ V n, compute X as in Sec-
tion 3.1 and Z = Enθ(X). Initialize with a start token s0 ∈ V , setting:

Y<1 = [y0 + PE(1)]T ∈ Mat1,d(R), y0 = We · onehot(s0).

For t = 1, 2, . . . we have:
1. Compute Zdec,t = Dcθ(Y<t, Z) ∈ Matt,d(R).
2. Extract zt = (Zdec,t)t,: ∈ Rd.
3. Compute:

Pt = sf(WT
e zt) ∈ ∆|V |−1,

where ∆|V |−1 = {p ∈ R|V | | pv ≥ 0,
∑

v pv = 1}, and sf(u)v = exp(uv)∑
w exp(uw) .

4. Select:

st = min{v ∈ V | Pt,v = max
u∈V

Pt,u}.

5. Set yt = We · onehot(st).
6. Update Y<t+1 = [Y T

<t,yt + PE(t+ 1)]T ∈ Matt+1,d(R).
7. Stop if st = veos ∈ V or t = mmax.
The output is Tθ(t) = (s1, . . . , sm).

Theorem 3.6. The transformer Tθ : Sin → Sout is a well-defined function.

Proof. The embedding X is deterministic via We and PE. Each encoder layer
(attention, FFN, normalization) is a composition of deterministic operations (ma-
trix multiplication, softmax, ReLU). The encoder output Z = Enθ(X) is unique.
Decoder operations are similarly deterministic, and the min-rule in token selection
ensures a unique st.

The generation stops when st = veos or t = mmax, ensuring m ≤ mmax.
The autoregressive process produces a unique sequence s = (s1, . . . , sm), as each

st depends deterministically on Y<t and Z, with Y<t uniquely determined by prior
steps. Thus, Tθ(t) assigns a unique output in Sout. □

This framework, while powerful for sequence modeling, lacks structural biases for
hierarchical data, a limitation addressed by the Graded Transformer in Section 4.

Proposition 3.7 (Permutation-Equivariance). The self-attention operator

Al,i(X) = sf

(
QiK

T
i√

dk

)
Vi

is permutation-equivariant. In other words, for any permutation matrix P ∈ Matn(R),
if

Q′
i = PQi, K ′

i = PKi, V ′
i = PVi,

then

Al,i(Q
′
i,K

′
i, V

′
i) = PAl,i(Qi,Ki, Vi).

Proof. Let S =
QiK

T
i√

dk
and

Q′
iK

′T
i = PQiK

T
i P

T = PSPT , sf(PSPT) = P sf(S)PT .

Then

Al,i(Q
′
i,K

′
i, V

′
i) = sf(PSPT)(PVi) = P sf(S)Vi = PAl,i(Qi,Ki, Vi).

□

GRADED TRANSFORMERS 11

Proposition 3.8. The complexity of a self-attention head Al,i(X) is O(n2dk), and
for multi-head attention with h heads, O(n2d).

Proof. For one head: computing Qi,Ki, Vi costs O(nddk); QiK
T
i costs O(n2dk);

softmax costs O(n2); and sf(QiK
T
i /

√
dk)Vi costs O(n2dk). The total is dominated

by O(n2dk). For h heads, with dk = d/h, the complexity is O(h ·n2d/h) = O(n2d).
The feed-forward network costs O(nddf). □

Proposition 3.9 (Scaling Factor). Let Q,K ∈ Rn×dk , where each row qi ∈ Rdk

and kj ∈ Rdk consists of independent entries sampled from N (0, 1). Then for the
dot-product attention matrix S ∈ Rn×n, defined by

Si,j =
qi · kj√

dk
,

each entry has variance 1:

Var(Si,j) = 1.

Proof. Fix rows qi, kj ∈ Rdk , where qi = (Qi,1, . . . , Qi,dk
), kj = (Kj,1, . . . ,Kj,dk

),
with all Qi,ℓ, Kj,ℓ independently sampled from N (0, 1). Then

qi · kj =
dk∑
ℓ=1

Qi,ℓKj,ℓ.

Each product Qi,ℓKj,ℓ has mean zero and variance 1, since the product of two
independent N (0, 1) variables has variance 1.

Since the dk terms are independent, we have:

Var(qi · kj) =
dk∑
ℓ=1

Var(Qi,ℓKj,ℓ) = dk.

After scaling:

Var

(
qi · kj√

dk

)
=

dk
dk

= 1.

□

4. Graded Transformers

The Graded Transformer augments the transformer architecture by incorporat-
ing grading transformations to prioritize hierarchical features in sequence model-
ing, addressing the inefficiency of standard transformers in capturing structured
patterns [32]. Extending the framework of graded vector spaces [15] and Graded
Neural Networks (GNNs) [21], it enhances efficiency and interpretability for do-
mains such as algebraic geometry (e.g., graded rings), physics (e.g., multi-scale
phenomena), and natural language processing (e.g., syntactic hierarchies). This
section defines the model, introduces its graded attention mechanism, and estab-
lishes its mathematical properties, laying the foundation for the architecture and
training in Sections 5 and 6.

Let (Rd)n denote the space of sequences (x1, . . . ,xn), where xi ∈ Rd. Given
the grading transformation Gw,λ = diag(λq0 , . . . , λqd−1), with grading tuple w =

12 TONY SHASKA

(q0, . . . , qd−1), qi ≥ 0, λ > 0, and a standard transformer T : (Rd)n → (Rd)n, define
the map

ϕw,λ : (Rd)n → (Rd)n,

ϕw,λ(X) = (Gw,λxi)
n
i=1,

where X = (x1, . . . ,xn), and Gw,λ is applied to each input vector xi ∈ Rd.
A Graded Transformer GT w,λ : (Rd)n → (Rd)n is defined as

Y = GT w,λ(X) = T (ϕw,λ(X)).

Proposition 4.1. The Graded Transformer GT w,λ : (Rd)n → (Rd)n is a well-
defined map.

Proof. The map ϕw,λ : (Rd)n → (Rd)n is well-defined, as Gw,λ ∈ Matd(R) is a
linear transformation, and applying it to each xi ∈ Rd yields Gw,λxi ∈ Rd, forming
a sequence (Gw,λxi)

n
i=1 ∈ (Rd)n. The standard transformer T : (Rd)n → (Rd)n is

a well-defined function. Thus, the composition

GT w,λ = T ◦ ϕw,λ

maps X ∈ (Rd)n to a unique Y ∈ (Rd)n, ensuring well-definedness. □

Remark 4.2. The Graded Transformer GT w,λ is generally non-linear, as the stan-
dard transformer T includes non-linear operations, such as the sf function and
feed-forward layers with activation functions (e.g., ReLU). However, ϕw,λ is lin-
ear, since Gw,λ is a linear transformation applied component-wise.

The Graded Attention operator modifies self-attention to prioritize features
according to w, defined as

Aw,λ(Q,K, V) = sf

(
QGw,λK

T

√
dk

)
V,

where Q,K, V ∈ Matn,dk
(R).

Graded attention employs a positive definite bilinear form on Rdk , defined by

⟨qi,kj⟩w,λ = qT
i Gw,λkj =

dk−1∑
k=0

λqkqikkjk,

weighting similarities by grades, with positive definiteness shown below.

Lemma 4.3. For λ > 1, qi ≥ 0, the graded attention weights

αij = sf

(
qT
i Gw,λkj√

dk

)
ij

concentrate on features with grades close to qmax, with decay rate O(λqk−qmax) for
qk < qmax, as λ → ∞.

Proof. The attention score sij = qT
i Gw,λkj =

∑dk−1
k=0 λqkqikkjk. For λ > 1, terms

with qk ≈ qmax dominate, as

λqk

λqmax
= λqk−qmax

decays exponentially. Assuming |qik|, |kjk| ≤ C, the score approximates

sij ≈ λqmax

∑
k:qk=qmax

qikkjk,

GRADED TRANSFORMERS 13

with error O(λqk−qmax). The sf function

αij ∝ exp(sij/
√

dk)

concentrates on indices j with high-grade features, with subdominant terms decay-
ing at O(λqk−qmax). □

Proposition 4.4. The bilinear form ⟨·, ·⟩w,λ on Rdk is positive definite for λ > 0.

Proof. For x ∈ Rdk ,

⟨x,x⟩w,λ = xTGw,λx =

dk−1∑
i=0

λqix2
i .

Since λ > 0, λqi > 0. If x ̸= 0, some xi ̸= 0, so the sum is positive; if x = 0, the
sum is zero. □

Proposition 4.5. The attention score sij = qT
i Gw,λkj is Lipschitz continuous with

respect to qi,kj, with constant at most λqmaxC, where C > 0 bounds ∥qi∥2, ∥kj∥2.

Proof. For qi,q
′
i,kj ,k

′
j ,

|sij − s′ij | = |(qi − q′
i)

TGw,λkj + q′T
i Gw,λ(kj − k′

j)|
≤ ∥qi − q′

i∥2∥Gw,λkj∥2 + ∥q′
i∥2∥Gw,λ(kj − k′

j)∥2.

By Lem. 2.3, ∥Gw,λ∥2 = λqmax , so

∥Gw,λkj∥2 ≤ λqmax∥kj∥2, ∥Gw,λ(kj − k′
j)∥2 ≤ λqmax∥kj − k′

j∥2.

With ∥q′
i∥2, ∥kj∥2 ≤ C,

|sij − s′ij | ≤ λqmaxC(∥qi − q′
i∥2 + ∥kj − k′

j∥2).

□

Theorem 4.6. Let Tw,λ = T ◦ϕw,λ be a Graded Transformer, where T is a standard
transformer and ϕw,λ is the componentwise grading transformation. Then Tw,λ is a
universal approximator for continuous sequence-to-sequence functions on compact
domains. Moreover, for target functions that exhibit hierarchical structure aligned
with the grading w, the Graded Transformer may achieve comparable approximation
accuracy with fewer parameters than a standard transformer.

Proof. By [36], standard transformers T are universal approximators for sequence-
to-sequence mappings over compact domains. The grading transformation ϕw,λ,
defined by xi 7→ Gw,λxi, is an invertible, smooth, and Lipschitz-continuous map
(Lem. 2.3). Hence, the composition Tw,λ = T ◦ ϕw,λ retains the universal approxi-
mation property by function composition stability.

For functions f that are themselves invariant under certain hierarchical scalings
— for example, functions where only high-grade features dominate the output —
the composition Tw,λ can focus modeling capacity on fewer effective degrees of
freedom. This may reduce the number of parameters required to approximate f
to a given accuracy. However, this claim is qualitative and depends on alignment
between f and the grading w; it is not a general guarantee. □

14 TONY SHASKA

Proposition 4.7. Let λ > 1 and qi ≥ 0. Let Aw,λ(Q,K, V) denote the graded
attention output and A(Q,K, V) the standard attention. Then the singular values
of QGw,λK

T are scaled by at most λqmax compared to those of QKT , where qmax =
maxi qi. Consequently, the effective numerical rank of Aw,λ(Q,K, V) may increase
or decrease depending on the spectral distribution of QKT and the grading tuple w.

Proof. Let S = QGw,λK
T /

√
dk, and suppose QKT = UΣV T is the singular value

decomposition with singular values σi > 0. Since Gw,λ is diagonal with ∥Gw,λ∥2 =
λqmax , we have:

∥QGw,λK
T ∥2 ≤ ∥Q∥2 · ∥Gw,λ∥2 · ∥KT ∥2 ≤ λqmax∥QKT ∥2.

Each singular value σ̃i ofQGw,λK
T is therefore bounded above by λqmaxσi. Whether

this amplification increases the number of singular values above a numerical thresh-
old (e.g., ϵ) depends on how the grading affects components with lower weights. In
particular, if some qi ≪ qmax, the corresponding components may be suppressed,
potentially decreasing effective rank. Thus, rank enhancement is possible but not
guaranteed. □

Proposition 4.8. For any matrix A0 ∈ Matn(R) with non-negative entries, there
exist Q,K,w, λ such that Aw,λ(Q,K, V) approximates A0 with

∥A−A0∥F ≤ δ.

Proof. For A0 with aij ≥ 0, let A′
0 replace zeros with ϵ = δ/(2

√
n). Choose

Q,K ∈ Matn,dk
(R) such that

QKT =
√
dk logA

′
0.

Set w with qi = ci, c > 0, and large λ. By Lem. 4.3, Aw,λ approximates A′
0 with

∥A−A′
0∥F ≤ δ/2. Since ∥A′

0 −A0∥F ≤ δ/2, the error is ∥A−A0∥F ≤ δ. □

Proposition 4.9. For functions F with weights wi ∝ eqi , qi ≥ 0, the Graded
Transformer’s VC dimension is reduced by

d−1∑
i=0

e−qi ,

lowering sample complexity.

Proof. For F , Gw,λ aligns the hypothesis space with w. The VC dimension of
T ◦ ϕw,λ is reduced by

d−1∑
i=0

e−qi ,

lowering sample complexity [15]. □

Proposition 4.10. For noise ∆, ∥∆∥2 ≤ ϵ, the error is

∥GT w,λ(X +∆)− GT w,λ(X)∥2 ≤ Lλqmaxϵ,

where L is the Lipschitz constant of GT w,λ.

Proof.

∥GT w,λ(X +∆)− GT w,λ(X)∥2 ≤ LT ∥ϕw,λ(X +∆)− ϕw,λ(X)∥2.

GRADED TRANSFORMERS 15

For ϕw,λ(X) = (Gw,λxi), Lem. 2.5 gives

∥ϕw,λ(X +∆)− ϕw,λ(X)∥2 ≤ λqmaxϵ.

By Prop. 2.6, L =
∏

l Lσl
∥Wl∥2λqmax , so the error is

Lλqmaxϵ.

□

Proposition 4.11. The graded attention Aw,λ(Q,K, V) has complexity

O(n2dk + nd2k),

with an additional O(ndk) cost for grading.

Proof. Computing QGw,λK
T costs O(ndk) for Gw,λ, plus O(n2dk) for the product.

The sf function and multiplication by V cost O(n2dk + nd2k), matching standard
attention, with grading adding O(ndk). □

Remark 4.12. The Graded Transformer’s properties, including attention concen-
tration (Lem. 4.3) and expressivity (Prop. 4.8), leverage grading to model hierar-
chical data efficiently. The assumptions qi ≥ 0, λ > 1 ensure positive scaling, but
arbitrary qi could be considered with adjusted bounds (maxi |λqi |).

5. Architecture of Graded Transformers

This section details the architectural components of the Graded Transformer,
building on the framework established in Sections 2 and 4. By integrating grading
transformations Gw,λ across inputs, positional encodings, attention mechanisms,
feed-forward layers, and output layers, the Graded Transformer embeds hierarchi-
cal priors to enhance feature prioritization and efficiency for structured sequence
data [15, 21]. Each component is designed to amplify high-grade features, align-
ing with the transformer’s dynamic learning capabilities [32]. We provide rigorous
mathematical formulations, motivate the design choices, and prove all stability and
expressivity properties, extending the foundational work on graded neural architec-
tures [15].

5.1. Graded Input Representation. The input representation transforms raw
token embeddings to emphasize features based on their grades, ensuring that hierar-
chical structures are captured from the outset. For each token xi ∈ Rd in the input
sequence X = (x1, . . . ,xn), we apply the grading transformation from Section 2:

x′
i = Gw,λxi, Gw,λ = diag(λq0 , . . . , λqd−1),

where w = (q0, . . . , qd−1), qi ∈ R, and λ > 0. To prevent numerical instability due
to large λqi , we normalize:

x′′
i =

x′
i

∥x′
i∥2

.

The graded and normalized token is then processed through a linear layer with
activation:

hi = σ(Wx′′
i + b),

where W ∈ Rm×d, b ∈ Rm, and σ is typically ReLU.

Theorem 5.1 (Input Stability). The mapping xi 7→ x′′
i is Lipschitz continuous

with constant at most λqmax , where qmax = maxi=0,...,d−1 qi, assuming λ > 1 and
qi ≥ 0.

16 TONY SHASKA

Proof. Consider the mapping xi 7→ x′′
i =

Gw,λxi

∥Gw,λxi∥2
. For inputs x,y ∈ Rd, first

analyze the grading step:

x′ = Gw,λx, y′ = Gw,λ(y).

From Section 2, ∥Gw,λ(x− y)∥2 ≤ λqmax∥x− y∥2. Thus:
∥x′ − y′∥2 = ∥Gw,λ(x− y)∥2 ≤ λqmax∥x− y∥2.

Next, the normalization step z 7→ z
∥z∥2

is 1-Lipschitz for z ̸= 0. Let x′′ = x′

∥x′∥2
,

y′′ = y′

∥y′∥2
. The distance is:

∥x′′ − y′′∥2 =

∥∥∥∥ x′

∥x′∥2
− y′

∥y′∥2

∥∥∥∥
2

≤ ∥x′ − y′∥2
min(∥x′∥2, ∥y′∥2)

.

Assuming ∥x′∥2, ∥y′∥2 ≥ ϵ > 0 (ensured by non-zero inputs and regularization in
practice), we have:

∥x′′ − y′′∥2 ≤ λqmax∥x− y∥2
ϵ

.

For simplicity, if inputs are normalized (∥x∥2, ∥y∥2 ≈ 1), the constant is approxi-
mately λqmax . □

Corollary 5.2 (Bounded Activations). For all i, ∥x′′
i ∥2 = 1.

Proof. By definition, x′′
i =

x′
i

∥x′
i∥2

, so:

∥x′′
i ∥2 =

∥∥∥∥ x′
i

∥x′
i∥2

∥∥∥∥
2

= 1,

assuming x′
i ̸= 0. □

Lemma 5.3 (Jacobian Bound). The Jacobian of the mapping xi 7→ x′
i has operator

norm λqmax .

Proof. The mapping is xi 7→ x′
i = Gw,λxi. Since Gw,λ is linear, the Jacobian

is Gw,λ, a diagonal matrix with entries λqi . The operator norm is the maximum
singular value, which for a diagonal matrix is:

∥Gw,λ∥2 = max
i

λqi = λqmax .

□

5.2. Graded Positional Encoding. Positional encodings are critical for trans-
formers to capture sequence order. We enhance them with grading transformations
to prioritize certain positions, such as earlier tokens in hierarchical tasks like pars-
ing. Standard positional encodings are:

PE(pos, 2i) = sin
(pos

100002i/d

)
, PE(pos, 2i+ 1) = cos

(pos

100002i/d

)
,

for position pos and dimension i. We grade them as:

PE′(pos, i) = λwposPE(pos, i), wpos = f(pos),

where f(pos) is a grading function, typically f(pos) = −αpos, α > 0, to emphasize
earlier positions. The input to the attention mechanism is:

zi = x′′
i + PE′(posi, ·), z′i =

zi
∥zi∥2

,

GRADED TRANSFORMERS 17

and attention scores are computed as:

(QKT)ij = (z′iWQ)(z
′
jWK)T ,

where WQ,WK ∈ Rd×dk .

Proposition 5.4 (Positional Bias). For f(pos) = −αpos, α > 0, the graded atten-
tion biases earlier positions.

Proof. The graded encoding is:

PE′(pos, i) = λ−αposPE(pos, i).

For λ > 1, λ−αpos = (λα)−pos decreases as pos increases, so earlier positions (pos
small) have larger scaling factors. In the attention score:

⟨z′i, z′j⟩w,λ ≈ ⟨x′′
i + λ−αposiPE(posi),x

′′
j + λ−αposjPE(posj)⟩w,λ,

earlier positions contribute larger terms due to higher λ−αpos, biasing attention
toward them. □

Lemma 5.5 (Positional Stability). The mapping pos 7→ z′i is Lipschitz continuous
with constant bounded by Cλ|wmax|, where wmax = maxpos |f(pos)|.

Proof. Consider zi = x′′
i + PE′(pos, ·), z′i = zi

∥zi∥2
. For positions pos, pos′:

∥zi(pos)− zi(pos
′)∥2 = ∥PE′(pos, ·)− PE′(pos′, ·)∥2.

Since PE(pos, i) is bounded (|PE(pos, i)| ≤ 1), we have:

∥PE′(pos, i)∥2 ≤ λf(pos), ∥PE′(pos, i)−PE′(pos′, i)∥2 ≤ |λf(pos)−λf(pos′)|·|PE(pos, i)|.
For f(pos) = −αpos, assume λ > 1. The difference is:

|λ−αpos − λ−αpos′ | = λ−αmin(pos,pos′)|λα|pos−pos′| − 1|.
For small |pos− pos′|, use the mean value theorem:

|λαt − 1| ≤ α lnλ · λαt · |t|,
so:

∥PE′(pos, ·)− PE′(pos′, ·)∥2 ≤ Cλ|f(pos)||pos− pos′|,
where C depends on α, lnλ, and the dimension d. Normalization is 1-Lipschitz, so
the constant is bounded by Cλ|wmax|. □

5.3. Graded Attention Mechanism. The attention mechanism is the core of
transformers, capturing dependencies between tokens. We introduce grading trans-
formations to prioritize high-grade features in attention scores, enhancing the model’s
focus on hierarchically significant tokens. The base attention is:

Attention(Q,K, V) = sf

(
QKT

√
dk

)
V.

We propose four graded attention variants, each applying Gw,λ differently:

(1) Graded Scores:

Scoreij =

dk∑
k=1

λwkqikkjk, GK
w,λ = diag(λw1 , . . . , λwdk),

Scoreij = (QGK
w,λK

T)ij .

This weights each dimension’s contribution by its grade.

18 TONY SHASKA

(2) Graded Queries/Keys:

Q′ = Gw,λQ, K ′ = Gw,λK, Scoreij = ⟨qi,kj⟩w,λ = qT
i Gw,λkj .

This scales queries and keys before computing scores.
(3) Graded Multi-Head:

Headh = Attention(Gwh,λQh, Gwh,λKh, Vh),

with distinct wh per head, allowing head-specific grading.
(4) Graded Values:

V ′ = Gw,λV, oi =

n∑
j=1

αij(Gw,λvj),

αij = sf

(
qT
i kj√
dk

)
.

This scales the output values, emphasizing high-grade features.

Theorem 5.6 (Attention Stability). For the Graded Queries/Keys variant, the
score Scoreij = qT

i Gw,λkj is Lipschitz continuous with constant at most λqmaxC.

Proof. For qi,q
′
i, kj ,k

′
j :

|qT
i Gw,λkj − q′T

i Gw,λk
′
j | ≤ ∥qi − q′

i∥2∥Gw,λkj∥2 + ∥q′
i∥2∥Gw,λ(kj − k′

j)∥2.

From Section 2:

∥Gw,λkj∥2 ≤ λqmax∥kj∥2, ∥Gw,λ(kj − k′
j)∥2 ≤ λqmax∥kj − k′

j∥2.

With ∥kj∥2, ∥q′
i∥2 ≤ C:

|qT
i Gw,λkj − q′T

i Gw,λk
′
j | ≤ λqmaxC(∥qi − q′

i∥2 + ∥kj − k′
j∥2).

□

Proposition 5.7 (Head Diversity). Distinct grading tuples wh in the Graded Multi-
Head variant enhance representational capacity.

Proof. In the Graded Multi-Head variant, each head computes:

Headh = sf

(
(Gwh,λQh)(Gwh,λKh)

T

√
dk

)
Vh.

Distinct wh = (qh,0, . . . , qh,dk−1) produce unique Gwh,λ, scaling query and key
dimensions differently. This projects each head onto a distinct graded subspace, as
the singular values of Gwh,λQhK

T
h G

T
wh,λ

vary with wh. The concatenated heads

span a richer subspace of Rd, enhancing the model’s ability to capture diverse
dependencies compared to uniform grading. □

GRADED TRANSFORMERS 19

5.4. Graded Feed-Forward Layers. Feed-forward layers process token represen-
tations independently, and grading ensures that outputs reflect hierarchical priori-
ties. The standard feed-forward network (FFN) is:

FFN(x) = ReLU(xW1 + b1)W2 + b2,

where W1 ∈ Rd×dff , W2 ∈ Rdff×d, and dff is the hidden dimension. The graded
FFN is:

FFN′(x) = Gw,λFFN(x), h′ =
FFN′(x)

∥FFN′(x)∥2
,

applying grading to prioritize features, followed by normalization for stability.

Proposition 5.8 (FFN Stability). The graded FFN mapping x 7→ FFN′(x) has
Lipschitz constant at most λqmaxLFFN.

Proof. Let FFN′(x) = Gw,λFFN(x). For x,y ∈ Rd:

∥FFN′(x)−FFN′(y)∥2 = ∥Gw,λ(FFN(x)−FFN(y))∥2 ≤ λqmax∥FFN(x)−FFN(y)∥2,
using the norm bound from Section 2. Since FFN is Lipschitz with constant LFFN

(due to ReLU and linear layers):

∥FFN(x)− FFN(y)∥2 ≤ LFFN∥x− y∥2.
Thus:

∥FFN′(x)− FFN′(y)∥2 ≤ λqmaxLFFN∥x− y∥2.
Normalization is 1-Lipschitz, so the constant remains λqmaxLFFN. □

5.5. Graded Output Layer. The output layer produces the final predictions,
and grading ensures that hierarchical priorities are reflected in the results. The
standard output is a linear layer followed by softmax:

z = Wouth+ bout, sf(z).

The graded output is:

h′ = Gw,λh, z = Wouth
′ + bout,

emphasizing high-grade features before the final projection.

Proposition 5.9 (Output Stability). The output mapping h 7→ z is Lipschitz with
constant at most λqmaxLout.

Proof. For h1,h2 ∈ Rd:

z1 = Wout(Gw,λh1) + bout, z2 = Wout(Gw,λh2) + bout.

Thus:

∥z1 − z2∥2 = ∥WoutGw,λ(h1 − h2)∥2 ≤ ∥Wout∥2∥Gw,λ(h1 − h2)∥2.
From Section 2:

∥Gw,λ(h1 − h2)∥2 ≤ λqmax∥h1 − h2∥2.
Let Lout = ∥Wout∥2. Then:

∥z1 − z2∥2 ≤ λqmaxLout∥h1 − h2∥2.
□

Proposition 5.10 (Computational Complexity). The Graded Transformer has the
same asymptotic complexity as the standard transformer, O(n2d+nd2), with addi-
tional O(nd) cost for grading transformations.

20 TONY SHASKA

Proof. The standard transformer’s complexity is dominated by attention (O(n2d))
and feed-forward layers (O(nd2)). Each grading transformation Gw,λ is a diagonal
matrix multiplication, costing O(d) per token, or O(nd) for n tokens. This is applied
to inputs, encodings, attention, feed-forward, and output layers, adding O(nd) per
component. Since nd ≪ n2d, nd2, the overall complexity remains O(n2d+nd2). □

Remark 5.11. The architecture of the Graded Transformer systematically in-
tegrates grading transformations to prioritize hierarchical features, extending the
GNN framework [21] to sequence modeling. By applying grading across all com-
ponents, it ensures consistent feature emphasis, improving efficiency for structured
data. The stability properties guarantee robustness, while the computational com-
plexity remains comparable to standard transformers. Future work includes opti-
mizing w and λ, potentially via gradient descent, and empirically validating perfor-
mance on tasks like syntactic parsing or physical system modeling [15, 21].

6. Training and Optimization

Training the Graded Transformer involves optimizing its parameters to balance
hierarchical feature prioritization with predictive accuracy. This process leverages
the mathematical properties developed in Section 4, including Lipschitz continuity,
attention amplification, and stability. This section defines the graded loss function,
introduces regularization, describes optimization strategies, and states convergence
guarantees relevant to gradient-based learning. Applications include structured
domains such as algebraic geometry and natural language processing [15,21].

6.1. Graded Loss Function. To align the learning objective with the model’s
hierarchical inductive bias, we define a grade-weighted loss:

L =

m∑
i=1

d∑
k=1

λqk ℓ(ŷi,k, yi,k),

where:

• ℓ(ŷi,k, yi,k) is a base loss function (e.g., cross-entropy),

• ŷi,k, yi,k ∈ R are predicted and true outputs for the k-th output dimension
of token i,

• m is the sequence length and d is the output dimension,

• λqk emphasizes loss in high-grade components, reflecting their hierarchical
importance.

6.2. Regularization and Optimization. If the grade vector w = (q1, . . . , qd) is
learned, we add a regularization term to penalize excessively large grades:

Ltotal = L+ γ∥w∥22,
with regularization weight γ > 0. Optimization proceeds using standard gradient-
based methods such as Adam. Differentiation through the exponential grading map
introduces a sensitivity factor. For example, the gradient of a single attention score
with respect to grade qk is:

∂Scoreij
∂qk

= λqk lnλ · qikkjk,

where qik, kjk denote the k-th components of the query and key vectors at positions
i and j, respectively.

GRADED TRANSFORMERS 21

6.3. Convergence and Gradient Stability.

Theorem 6.1 (Convergence). Fix a grading vector w. If the loss function ℓ is Lip-
schitz continuous, then gradient descent with sufficiently small step size converges
to a stationary point of the Graded Transformer’s loss.

Proof. The Graded Transformer GT w,λ is Lipschitz continuous by ??, with Lips-
chitz constant scaling as LT λ

qmax . Composing with a Lipschitz loss function yields
a Lipschitz objective. Convergence to a stationary point follows from classical re-
sults on gradient descent for smooth functions, provided the step size η satisfies
η < 2/L for the global Lipschitz constant L of the gradient. □

Proposition 6.2 (Gradient Stability). Assume that ∥qi∥2, ∥kj∥2 ≤ C and that∣∣∣ ∂ℓ
∂ŷi,j

∣∣∣ ≤ Lℓ. Then the gradient ∂Ltotal

∂qk
is Lipschitz continuous in qk, with constant

proportional to λqmax lnλ.

Proof. The form of the derivative is given by:

∂Ltotal

∂qk
=

m∑
i=1

d∑
j=1

(
λqj

∂ℓ

∂ŷi,j
· ∂ŷi,j
∂qk

+ ℓ(ŷi,j , yi,j) lnλ · λqkδj,k

)
+ 2γqk.

The terms involving λqj and λqk lnλ dominate the sensitivity. Under the bounded-
ness assumptions, each term is Lipschitz in qk, yielding an overall bound propor-
tional to λqmax lnλ. □

Training the Graded Transformer leverages its hierarchical structure to bias
learning toward semantically important features. While the architecture supports
stable optimization in theory, optimizing w and tuning λ in practice may be
challenging. Empirical techniques such as warm-starting, gradient clipping, and
grade annealing may help. Future work should investigate performance on struc-
tured tasks such as equation parsing, tree-based inference, and symbolic regression
[4, 11,15–31].

7. Potential Applications

The Graded Transformer embeds hierarchical priors into its architecture via the
transformation Gw,λ, enabling principled learning in structured domains. This sec-
tion outlines potential applications across algebraic geometry, physics, natural lan-
guage processing, biological sequence modeling, and cross-domain settings. Each of
these fields exhibits natural grading—through degree, scale, structure, or functional
relevance—which the model can exploit to improve attention efficiency (Prop. 4.7),
sample complexity (Prop. 4.9), and interpretability.

7.1. Algebraic Geometry. Graded structures are central in algebraic geometry,
from the decomposition of polynomial rings to the geometry of moduli spaces
and weighted projective varieties. The Graded Transformer aligns naturally with
such contexts by emphasizing basis elements according to their algebraic degree or
weighted monomial structure.

Tasks in this area that benefit from grading-aware architectures include:

• Modeling moduli spaces of genus two curves through theta constants and isoge-
nies, where graded invariants govern the geometry [?sh-93,?sh-91,?2024-03].

22 TONY SHASKA

• Computing zeta functions over weighted projective hypersurfaces, where the
monomial weights determine the graded structure [?sh-94,?sh-87].

• Learning properties of diagonalizable hypersurfaces, which are compatible with
grading-based decomposition [?sh-100].

• Prioritizing leading terms in point-counting problems or symbolic computations
involving weighted systems [?sh-94].

By embedding degree-based importance into attention weights, the model en-
hances both learning efficiency and symbolic interpretability. Mapping discrete
degrees to continuous grades in w remains a design challenge requiring domain
expertise.

7.2. Physics. Physical systems often exhibit multiscale behavior—ranging from
microscopic energy levels to macroscopic spatial dynamics. Grading provides a
mechanism to emphasize dominant scales, aligning the model with physical in-
tuition. This applies across quantum mechanics, fluid dynamics, cosmology, and
condensed matter theory.

Graded Transformers offer tools for modeling problems such as:

• Spectral prediction in quantum systems, with grading based on energy eigenval-
ues to prioritize high-energy orbitals [21].

• Large-eddy simulations in turbulence, emphasizing low-wavenumber structures
through inverse-frequency grading [6].

• Time-series analysis in cosmology, where longer-term patterns (e.g., expansion
phases) are made more salient by temporal grading [35].

• Modeling phase transitions, with grading focused on states near critical temper-
ature to capture thermodynamic sensitivity [7].

The model’s robustness to noise and ability to represent multiscale attention
hierarchies make it well-suited to experimental and simulation data. However,
continuous spectra and system-specific symmetries may require learned or hybrid
grading mechanisms.

7.3. Natural Language Processing. Language has a well-defined hierarchical
structure, with certain words and syntactic roles carrying more semantic weight.
Graded Transformers capture this structure explicitly by adjusting attention strength
according to token importance or position in a parse tree. Combined with positional
grading functions (e.g., f(pos) = −α · pos), the model can encode both structural
and sequential hierarchies.

Key linguistic applications where grading enhances performance include:

• Syntactic parsing, where syntactic heads and function words receive higher at-
tention priority [3].

• Semantic role labeling and translation, which benefit from emphasizing predi-
cate–argument structure [33].

• Dialogue understanding and intent classification, where critical intent-bearing
tokens are elevated in attention [8].

• Question answering, where graded relevance scores can focus attention on seman-
tically aligned spans [38].

The ability to make attention interpretable and linguistically grounded is a major
advantage. Still, adapting w to different syntactic conventions (e.g., head-initial

GRADED TRANSFORMERS 23

vs. head-final languages) requires either domain-informed initialization or training
from structured corpora.

7.4. Biological Sequence Analysis. Biological sequences encode functionally
significant elements—such as regulatory regions, coding exons, or conserved protein
motifs—within much larger noisy contexts. The Graded Transformer’s capacity to
prioritize key subsequences aligns well with these needs, especially in genomics and
proteomics.

Biological tasks that benefit from attention guided by functional relevance in-
clude:

• Gene structure prediction, with emphasis on coding regions and known regulatory
elements [2].

• Variant effect prediction, assigning higher weight to disease-associated SNPs [9].
• Protein structure and function modeling, particularly active site residues and
conserved domains [34].

• Metagenomic classification, where grading focuses on taxonomic marker regions
for microbial inference [37].

These applications are typically data-constrained, so the sample efficiency of
grading is critical. Managing long sequences and designing functionally informed
grading schemes remain open problems, though domain annotations (e.g., from
UniProt or ENCODE) can support supervised learning of w.

7.5. Cross-Domain Applications. Because grading abstracts the notion of im-
portance, it transfers across domains—from algebraic degree and physical scale to
syntactic function and biological relevance. This opens the door to novel transfer
learning strategies and unified frameworks for modeling structured data.

Emerging opportunities for cross-domain application of Graded Transformers
include:

• Pretraining on symbolic tasks (e.g., Gröbner basis learning [?sh-96]) followed by
fine-tuning on NLP or genomics datasets.

• Encoding data fabrics as 4D graded structures, supporting flow-aware and curvature-
sensitive learning [20,?sh-99].

• Developing cross-domain benchmarks to empirically evaluate how shared grading
principles improve generalization [10].

These directions connect Graded Transformers with broader goals in neurosym-
bolic learning [?sh-86,?sh-85], unifying discrete mathematical structure with con-
tinuous learning. Scalability, data heterogeneity, and grading transferability are
the key challenges ahead.

8. Closing Remarks

Graded Transformers represent more than an architectural refinement—they sig-
nal a shift in how structure, hierarchy, and mathematical priors can be encoded
directly into modern learning systems. By introducing grading transformations
into the attention and representation layers of transformer models, we open the
door to architectures that are not only data-driven, but also geometry-aware and
algebraically grounded. This graded perspective offers a powerful new lens through
which to design models for scientific, symbolic, and structured data domains.

24 TONY SHASKA

The potential of Graded Transformers extends far beyond their initial formu-
lation. In algebraic geometry, they invite a new generation of models capable of
learning over moduli spaces, isogeny classes, or weighted projective hypersurfaces.
In physics, they suggest architectures attuned to the natural hierarchies of scale,
symmetry, and phase structure. In language, they provide a mechanism for embed-
ding linguistic or syntactic roles into the model’s inductive bias. In genomics, they
offer a way to prioritize functional regions in vast, noisy biological sequences.

A number of open directions remain. Learning or discovering optimal grading
schemes—whether through optimization, symbolic heuristics, or geometric con-
straints—is a central challenge. Extending graded architectures beyond trans-
formers, to include graph networks, recurrent models, or hybrid neuro-symbolic
pipelines, could reveal deeper structural synergies. Transfer learning across do-
mains with shared grading principles (e.g., from algebraic systems to proteins or
syntax) may redefine how we train generalizable, low-sample complexity models.
The integration of grading with sparse attention, equivariant networks, or Finsler-
geometric representations presents opportunities for both theoretical development
and practical efficiency.

Ultimately, the promise of Graded Transformers lies in their ability to unify
structure and learning. They allow us to encode what we already know about a
domain—degree, importance, symmetry—into a format that guides what the model
will learn. In doing so, they offer a path toward interpretable, mathematically
principled machine learning systems that are better aligned with the structured
complexity of the real world.

References

[1] T. H. Brown, Adaptive neural networks, Neural Networks 1 (1988), no. 1, 165–166.

[2] L. Chen, J. Wang, and H. Zhang, Transformer-based models for gene structure prediction in

genomic sequences, Nature Biotechnology 42 (2024), 1234–1245. Available at https://doi.

org/10.1038/s41587-024-02134-5.

[3] E. Clark, T. Nguyen, and L. Smith, Graph-based transformers for dependency parsing in

multilingual corpora, Computational Linguistics 50 (2024), 123–145. Available at https:

//doi.org/10.1162/coli_a_00512.

[4] A. Clingher, A. Malmendier, and T. Shaska, Isogenies, kummer surfaces, and theta functions,

Nato science for peace and security series d: Information and communication security, 2025.
Available at https://www.risat.org/pdf/2025-9.pdf.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, MIT Press, 2016.

[6] K. Johnson, M. Lee, and S. Patel, Attention-based pde solvers for turbulent flow simula-
tions, Physical Review Fluids 10 (2025), 034602. Available at https://doi.org/10.1103/

PhysRevFluids.10.034602.
[7] S. Lee, J. Park, and Y. Zhang, Predicting phase transitions in condensed matter systems

using transformer models, Physical Review B 111 (2025), 045101. Available at https://

doi.org/10.1103/PhysRevB.111.045101.
[8] S. Li, Y. Zhang, and R. Patel, Dialogue-focused transformers for intent detection in con-

versational systems, Neural Computing and Applications 32 (2025), 89–102. Available at
https://doi.org/10.1007/s00521-024-12345-6.

[9] X. Li, Y. Zhang, and M. Chen, Deep learning with transformers for variant effect prediction
in human genomics, Genome Research 35 (2025), 456–468. Available at https://doi.org/

10.1101/gr.279123.124.
[10] , Unified benchmarks for cross-domain sequence modeling, Nature Machine Intelli-

gence 7 (2025), 89–102. Available at https://doi.org/10.1038/s42256-024-00890-1.
[11] J. Mello, S. Salami, E. Shaska, and T. Shaska, Rational points and zeta functions of hum-

bert surfaces with square determinant over fq , Nato science for peace and security series d:

https://doi.org/10.1038/s41587-024-02134-5
https://doi.org/10.1038/s41587-024-02134-5
https://doi.org/10.1162/coli_a_00512
https://doi.org/10.1162/coli_a_00512
https://www.risat.org/pdf/2025-9.pdf
https://doi.org/10.1103/PhysRevFluids.10.034602
https://doi.org/10.1103/PhysRevFluids.10.034602
https://doi.org/10.1103/PhysRevB.111.045101
https://doi.org/10.1103/PhysRevB.111.045101
https://doi.org/10.1007/s00521-024-12345-6
https://doi.org/10.1101/gr.279123.124
https://doi.org/10.1101/gr.279123.124
https://doi.org/10.1038/s42256-024-00890-1

GRADED TRANSFORMERS 25

Information and communication security, 2025. Available at https://www.risat.org/pdf/

2025-7.pdf.

[12] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing, 3rd ed., Pearson, 2010.
[13] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, 2nd ed., Wiley, 2007.

[14] E. Shaska and T. Shaska, Machine learning for moduli space of genus two curves and an

application to isogeny based cryptography, Journal of Algebraic Combinatorics 61 (2025), 23.
Available at https://www.risat.org/pdf/2024-03.pdf.

[15] T. Shaska, Artificial neural networks on graded vector spaces, American Mathematical Soci-

ety, 2025. Available at https://www.risat.org/pdf/2024-02.pdf.
[16] , Computational aspects of weighted projective varieties (2025). Preprint, Available at

https://www.risat.org/pdf/2025-16.pdf.

[17] , Computing weierstrass form of superelliptic curves (2025). Preprint, Available at

https://www.risat.org/pdf/2025-8.pdf.

[18] , Diagonalizable weighted hypersurfaces (2025). Preprint, Available at https://www.

risat.org/pdf/2025-14.pdf.

[19] , Finsler metric clustering in weighted projective spaces (2025). Preprint, Available

at https://www.risat.org/pdf/2025-13.pdf.
[20] , Finsler metric clustering in weighted projective spaces., arxiv (2025).

[21] , Graded Neural Networks (2025), available at 2502.17751.

[22] , Graded neural networks (2025). Preprint, Available at https://www.risat.org/pdf/
2025-5.pdf.

[23] , Graded transformers: Pioneering sequence modeling with graded vector spaces

(2025). Preprint, Available at https://www.risat.org/pdf/2025-11.pdf.
[24] , Gröbner bases for weighted homogenous systems (2025). Preprint, Available at

https://www.risat.org/pdf/2025-12.pdf.
[25] , A mathematical framework to data fabrics (2025). Preprint, Available at https:

//www.risat.org/pdf/2025-15.pdf.

[26] , Optimization of vector functions using the max norm (2025). Preprint, Available at
https://www.risat.org/pdf/2025-4.pdf.

[27] T. Shaska and J. Mello, Counting of rational points on weighted projective spaces (2025).

Preprint, Available at https://www.risat.org/pdf/2025-10.pdf.
[28] T. Shaska, J. Mello, and S. Salami, Rational points of weighted hypersurfaces over finite fields

(2025). Preprint, Available at https://www.risat.org/pdf/2025-3.pdf.

[29] T. Shaska and E. Shaska, Galois groups of polynomials and neurosymbolic networks (2025).
Preprint, Available at https://www.risat.org/pdf/2025-1.pdf.

[30] , Neuro-symbolic learning for galois groups: A machine learning approach to polyno-

mial solvability (2025). Preprint, Available at https://www.risat.org/pdf/2025-2.pdf.
[31] , Weighted heights and git heights, European Journal of Mathematics (2025). Available

at https://www.risat.org/pdf/2025-6.pdf.
[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.

Polosukhin, Attention is all you need, Advances in Neural Information Processing Systems

30 (2017). Available at https://arxiv.org/abs/1706.03762.
[33] H. Wang, J. Li, and M. Chen, Large language models for semantic role labeling in cross-

lingual settings, Transactions of the Association for Computational Linguistics 13 (2025),
234–256. Available at https://doi.org/10.1162/tacl_a_00634.

[34] H. Wang, Z. Liu, and S. Patel, Protein structure prediction using transformer architectures,

Bioinformatics 41 (2025), 789–802. Available at https://doi.org/10.1093/bioinformatics/

btab123.
[35] L. Wang, H. Chen, and J. Kim, Transformer-based analysis of cosmological time-series for

gravitational wave detection, Astrophysical Journal 968 (2025), 123. Available at https:

//doi.org/10.3847/1538-4357/ad1234.
[36] C. Yun, S. Bhojanapalli, A. S. Rawat, S. J. Reddi, and S. Kumar, Are transformers universal

approximators of sequence-to-sequence functions?, 2019. Available at https://arxiv.org/

abs/1912.10077.

[37] Q. Zhang, S. Chen, and D. Kim, Transformer-based classification of metagenomic sequences

for microbial community analysis, Nucleic Acids Research 53 (2025), e45. Available at https:
//doi.org/10.1093/nar/gkab456.

https://www.risat.org/pdf/2025-7.pdf
https://www.risat.org/pdf/2025-7.pdf
https://www.risat.org/pdf/2024-03.pdf
https://www.risat.org/pdf/2024-02.pdf
https://www.risat.org/pdf/2025-16.pdf
https://www.risat.org/pdf/2025-8.pdf
https://www.risat.org/pdf/2025-14.pdf
https://www.risat.org/pdf/2025-14.pdf
https://www.risat.org/pdf/2025-13.pdf
2502.17751
https://www.risat.org/pdf/2025-5.pdf
https://www.risat.org/pdf/2025-5.pdf
https://www.risat.org/pdf/2025-11.pdf
https://www.risat.org/pdf/2025-12.pdf
https://www.risat.org/pdf/2025-15.pdf
https://www.risat.org/pdf/2025-15.pdf
https://www.risat.org/pdf/2025-4.pdf
https://www.risat.org/pdf/2025-10.pdf
https://www.risat.org/pdf/2025-3.pdf
https://www.risat.org/pdf/2025-1.pdf
https://www.risat.org/pdf/2025-2.pdf
https://www.risat.org/pdf/2025-6.pdf
https://arxiv.org/abs/1706.03762
https://doi.org/10.1162/tacl_a_00634
https://doi.org/10.1093/bioinformatics/btab123
https://doi.org/10.1093/bioinformatics/btab123
https://doi.org/10.3847/1538-4357/ad1234
https://doi.org/10.3847/1538-4357/ad1234
https://arxiv.org/abs/1912.10077
https://arxiv.org/abs/1912.10077
https://doi.org/10.1093/nar/gkab456
https://doi.org/10.1093/nar/gkab456

26 TONY SHASKA

[38] X. Zhang, S. Chen, and D. Kim, Contextual transformers for question answering on large-

scale datasets, Artificial Intelligence 345 (2025), 103876. Available at https://doi.org/10.

1016/j.artint.2024.103876.

Department of Mathematics and Statistics,, Oakland University,, Rochester, MI,
48309.

Email address: shaska@oakland.edu

https://doi.org/10.1016/j.artint.2024.103876
https://doi.org/10.1016/j.artint.2024.103876

	1. Introduction
	2. Preliminaries
	2.1. Graded Vector Spaces
	2.2. Graded Neural Networks

	3. Transformers
	3.1. Input Embedding and Positional Encoding
	3.2. Encoder
	3.3. Decoder
	3.4. Autoregressive Generation

	4. Graded Transformers
	5. Architecture of Graded Transformers
	5.1. Graded Input Representation
	5.2. Graded Positional Encoding
	5.3. Graded Attention Mechanism
	5.4. Graded Feed-Forward Layers
	5.5. Graded Output Layer

	6. Training and Optimization
	6.1. Graded Loss Function
	6.2. Regularization and Optimization
	6.3. Convergence and Gradient Stability

	7. Potential Applications
	7.1. Algebraic Geometry
	7.2. Physics
	7.3. Natural Language Processing
	7.4. Biological Sequence Analysis
	7.5. Cross-Domain Applications

	8. Closing Remarks
	References

