Tanush Shaska
MR Author Id 678224 zbMath Orcid  dblp
Google Scholar  Arxiv Math Genealogy
CV  Contact  Zoom
sh-101: Weighted Heights on Toric Varieties: A Combinatorial and Arithmetic Framework
sh-100: Diagonalizable weighted hypersurfaces
sh-99: A mathematical framework to data fabrics
sh-98: Hitchin spinors on genus-two curves with symmetries, A. Clingher, A. Malmendier, T. Shaska
sh-97: Finsler Metric Clustering in Weighted Projective Spaces,
Journal of Machine Learning Research
sh-96: Gröbner bases for weighted homogenous systems
sh-95: Graded Transformers: A Symbolic-Geometric Approach to Structured Learning
sh-94: Counting of Rational Points on Weighted Projective Spaces, J. Mello and T. Shaska
sh-93: Isogenies, Kummer surfaces, and theta functions, A. Clingher, A. Malmendier, T. Shaska,
NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. Vol. 66
sh-92: Computing Weierstrass form of superelliptic curvesÂ
sh-91: Rational Points and Zeta Functions of Humbert Surfaces with Square Determinant over F_q,
J. Mello, S. Salami, E. Shaska, T. Shaska,Â
NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur. Vol. 66
sh-90: Weighted Heights and GIT Heights, E. Shaska and T. Shaska, (submitted)
Journal of Algebraic Combinatorics
sh-89:Â Graded Neural Networks
International Journal of Data Science in the Mathematical Sciences
sh-88: Optimization of Vector Functions Using the Max Norm
sh-87: Rational points of weighted hypersurfaces over finite fields, J. Mello, S. Salami, T. Shaska
sh-86: Neuro-Symbolic Learning for Irreducible Sextics: Unveiling Probabilistic Trends in Polynomials, E. Shaska and T. Shaska
sh-85: Galois groups of polynomials and neurosymbolic networks, Â E. Shaska and T. Shaska
2024-06: A Neurosymbolic Framework for Geometric Reduction of Binary Forms, Ilias Kostireas and Tony Shaska
Contemporary Math. Â 2025
2024-05: Polynomials, Galois groups, and Database-Driven Arithmetic, E. Curri and T. ShaskaÂ
Contemporary Math. Â 2025
2024-04: Rational Functions on the Projective Line from a Computational Viewpoint, E. Badr, E. Shaska, T. Shaska
Journal of Symbolic Computation
2024-03: Machine learning for moduli space of genus two curves and an application to isogeny based cryptography,Â
Journal of Algebr Comb 61, 23 (2025).
2024-02: Artificial neural networks on graded vector spaces  Â
Contemporary Math, 2025
2024-01: Equations for generalized superelliptic Riemann surfaces, R. Hidalgo, S. Quispe, T. Shaska
2023-01: Â Vojta's conjecture on weighted projective varieties, S. Salami, T. Shaska;
European Journal of Mathematics,  11, 12 (2025). Â
2022-1: Local and global heights on weighted projective varieties, S. Salami, T. Shaska;
Houston J. Math. Vol. 49, #3, (2023), pg. 603-636
2021-2: Arithmetic inflection of superelliptic curves, E Cotterill, I Darago, C. G López, C Han, T Shaska,Â
Michigan J. Math.Â
2021-1: Geometry of Prym varieties for certain bielliptic curves of genus three and five,
Pure Appl. Math. Q. Â 17Â 1739--1784Â (2021)Â https://doi.org/10.4310/PAMQ.2021.v17.n5.a5Â
2020-1: Reduction of superelliptic Riemann surfaces,
Contemporary Math. 776Â 227--247Â (2022)Â Â https://doi.org/10.1090/conm/776/15614Â Â Â
2020-i: Integrable systems: a celebration of Emma Previato's 65th birthday, R. Donagi and T. Shaska, 458,1--12 (2020)Â
2020-ii: Algebraic geometry: a celebration of Emma Previato's 65th birthday, R. Donagi and T. Shaska, 1--12 (2020)
2019-5: The addition on Jacobian varieties from a geometric viewpoint, Y. Kopeliovich, T. Shaska  https://arxiv.org/abs/1907.11070
2019-4: From hyperelliptic to superelliptic curves, A. Malmendier and T. Shaska;
Albanian J. Math. 13 107--200 (2019)
2019-3: Superelliptic curves with many automorphisms and CM Jacobians, A. Obus and T. Shaska
Math. Comp. 90 2951--2975 (2021) https://doi.org/10.1090/mcom/3639Â
2019-2: On isogenies among certain abelian surfaces, A. Clingher, A. Malmendier, T. Shaska,Â
Mich. Math. J. 71 227--269 (2022) https://doi.org/10.1307/mmj/20195790Â
2019-1:Â Weighted greatest common divisors and weighted heights,
J. Number Theory 213 319--346 (2020) https://doi.org/10.1016/j.jnt.2019.12.012 Â
2018-6: On automorphisms of algebraic curves, Contemporary Math. 724Â 175--212Â (2019) https://doi.org/10.1090/conm/724/14590Â
2018-5: Kay Magaard (1962--2018), Gerhard Hiss and Tony Shaska
Albanian J. Math. 12 33--35 (2018) https://albanian-j-math.com/archives/2018-05.pdf
2018-4: Computing heights on weighted projective spaces, J. Mandili, T. Shaska
Contemporary Math. 724 149--160 (2019) https://doi.org/10.1090/conm/724/14588  Â
2018-3:Â Six line configurations and string dualities, A.Clingher, A.Malmendier, T. Shaska,Â
Comm. Math. Phys. 371 159--196 (2019) https://doi.org/10.1007/s00220-019-03372-0Â
2018-2: On the discriminant of certain quadrinomials, Sh. Otake, T. Shaska,Â
Contemporary Math. 724Â 55--72Â (2019) https://doi.org/10.1090/conm/724/14585Â Â Â
2018-1: Curves, Jacobians, and cryptography, G. Frey, T. Shaska
Contemporary Math. 724Â 279--344Â (2019) https://doi.org/10.1090/conm/724/14596Â Â Â
2017-4: Coing Theory, Alfred J. Menezes, Paul C. van Oorschot, David Joyner, Tony Shaska, Douglas R. Shier, Wayne Goddard,
Chapter to Handbook of Discrete and Combinatorial Mathematics
2017-3: Some remarks on the non-real roots of polynomials, Sh. Otake, T. Shaska,
Cubo 20 67--93 (2018)
2017-2: Isogenous components of Jacobian surfaces, L. Beshaj, A. Elezi, T. Shaska,
Eur. J. Math. 6 1276--1302 (2020) https://doi.org/10.1007/s40879-019-00375-yÂ
2017-1:Â Reduction of binary forms via the hyperbolic centroid, A. Elezi, T. Shaska,Â
Lobachevskii J. Math. 42 84--95 (2021) https://doi.org/10.1134/s199508022101011xÂ
2016-6: On generalized superelliptic Riemann surfaces, R. Hidalgo, S. Quispe, T. Shaska
Transformation Groups (2025) Â Â Â https://arxiv.org/abs/1609.09576
2016-5: Rational points in the moduli space of genus two, Contemp. Math., 703, 83--115Â (2018)Â https://doi.org/10.1090/conm/703/14132Â
2016-4: The Satake sextic in F-theory, A. Malmendier, T. Shaska,Â
J. Geom. Phys. 120 290--305 (2017)  https://doi.org/10.1016/j.geomphys.2017.06.010Â
2016-3: A universal genus-two curve from Siegel modular forms, A. Malmendier, T. Shaska;Â
SIGMA Symmetry Integrability Geom. Methods Appl. 13 Paper No. 089, 17 (2017) https://doi.org/10.3842/SIGMA.2017.089Â
2016-2: Self-inversive polynomials, curves, and codes, D. Joyner, T. Shaska,
Contemp. Math., 703, AMS, 2018, 189–208. https://doi.org/10.1090/conm/703/14138 Â
2016-1:Â On the field of moduli of superelliptic curves, R. Hidalgo, T. Shaska,
Contemp. Math., 703, AMS, 2018, 47–62. https://doi.org/10.1090/conm/703/14130  Â
2015-4: Theta functions of superelliptic curves,
NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 47–69.
2015-3: Weight distributions, zeta functions and Riemann hypothesis for linear and algebraic geometry codes, A. Elezi, T. Shaska, 41Â 328--359Â (2015)
2015-2: Weierstrass points of superelliptic curves, C. Shor, T. Shaska, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 15–46.
2015-1: The case for superelliptic curvesL. Beshaj, T. Shaska, E. Zhupa, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 1–14.
2014-2: Cyclic curves over the reals, M. Izquierdo, T. Shaska, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 70–83.
2014-1: Heights on algebraic curves, T. Shaska, L. Beshaj, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 41, IOS Press, Amsterdam, 2015, 137–175.
2013-7: Bielliptic curves of genus 3 in hyperelliptic moduli,
Appl. Algebra Engrg. Comm. Comput. 24Â 387--412 (2013) https://doi.org/10.1007/s00200-013-0209-9Â
2013-4: 2-Weierstrass points of genus 3 hyperelliptic curves with extra involutions,
Comm. Algebra, 45Â 1879--1892Â (2017). https://doi.org/10.1080/00927872.2016.1226861Â Â Â
2013-2: Theta functions and symmetric weight enumerators for codes over imaginary quadratic fields, T. Shaska, C. Shor,
Des. Codes Cryptogr. 76 217--235 (2015)  https://doi.org/10.1007/s10623-014-9943-7Â
2013-1: On Jacobians of curves with superelliptic components, L. Beshaj, T. Shaska, C. Shor,
Contemp. Math., 629, American Mathematical Society, Providence, RI, 2014, 1–14. https://doi.org/10.1090/conm/629/12557  Â
2013-i: Computational algebraic geometry and its applications, T. Shaska,
Appl. Algebra Engrg. Comm. Comput. 24 309--311 (2013)  https://doi.org/10.1007/s00200-013-0204-1
2013-ii: Computational algebraic geometry, T. Shaska,
J. Symbolic Comput. 57 1--2 (2013)  https://doi.org/10.1016/j.jsc.2013.05.001
2012-2:Â Genus two curves with many elliptic subcovers, T. Shaska;
Comm. Algebra, 44 4450--4466 (2016) https://doi.org/10.1080/00927872.2015.1027365
2012-1: Some remarks on the hyperelliptic moduli of genus 3, T. Shaska;
Comm. Algebra, Â 42Â 4110--4130Â (2014)Â https://doi.org/10.1080/00927872.2013.791305Â Â Â
2011-2: On superelliptic curves of level $n$ and their quotients, L. Beshaj, V. Hoxha, T. Shaska, Albanian J. Math. 5 115--137 (2011)
2011-1: Quantum codes from superelliptic curves, A. Elezi, T. Shaska, Albanian J. Math. 5 175--191 (2011)
2010-1: The arithmetic of genus two curves, T. Shaska, L. Beshaj, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 29, IOS Press, Amsterdam, 2011, 59–98.
2009-1: Theta functions and algebraic curves with automorphisms, T. Shaska, S. Wijesiri, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., 24, IOS Press, Amsterdam, 2009, 193–237.
2008-5: On some applications of graphs to cryptography and turbocoding, T. Shaska, V. Ustimenko; Albanian J. Math. 2 249--255 (2008)
2008-4: Degree even coverings of elliptic curves by genus 2 curves, N. Pjero, M. Ramasaco, T. Shaska; Albanian J. Math. 2 241--248 (2008)
2008-3: Determining equations of families of cyclic curves, R. Sanjeewa, T. Shaska, Albanian J. Math. 2 199--213 (2008)
2008-2: On the homogeneous algebraic graphs of large girth and their applications, T. Shaska, V. Ustimenko;
Linear Algebra Appl. 430 1826--1837 (2009)  https://doi.org/10.1016/j.laa.2008.08.023
2008-1: Degree 4 coverings of elliptic curves by genus 2 curves, T. Shaska, S. Wijesiri, S. Wolf, L. Woodland, Albanian J. Math. 2 307--318 (2008)
2007-5: Quantum Codes from Algebraic Curves with Automorphisms, Condensed Matter Physics 2008, Vol. 11, No 2(54), pp. 383–396
2007-4: Some open problems in computational algebraic geometry, T. Shaska; Albanian J. Math. 1 297--319 (2007)
2007-3: Thetanulls of cyclic curves of small genus, E. Previato, T. Shaska, S. Wijesiri; Albanian J. Math. 1 253--270 (2007)
2007-2: Codes over rings of size {$p^2$} and lattices over imaginary quadratic fields, T. Shaska, C. Shor, S. Wijesiri,
Finite Fields Appl. 16 75--87 (2010)  https://doi.org/10.1016/j.ffa.2010.01.005Â
2006-4: Subvarieties of the hyperelliptic moduli determined by group actions,
Serdica Math. J. Â 32Â 355--374Â (2006)
2006-3: Codes over F_{p^2} and F_pxF_p, lattices, and theta functions, T. Shaska, C. Shor,Â
Ser. Coding Theory Cryptol., 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007, 70–80. https://doi.org/10.1142/9789812772022%5C_0005Â
2006-2: Codes over rings of size four, Hermitian lattices, and corresponding theta functions, T. Shaska, S. Wijesiri,
Proc. Amer. Math. Soc. 136 849--857 (2008)  https://doi.org/10.1090/S0002-9939-07-09152-6  Â
2006-1: On the automorphism groups of some AG-codes based on $C_{a,b}$ curves, T. Shaska, Q. Wang,
Serdica J. Comput. Â 1Â 193--206Â (2007)
2005-4: A Maple package for hyperelliptic curves, T. Shaska, S. Zheng, 399--408Â (2005)
2005-3: Hyperelliptic curves of genus 3 with prescribed automorphism group, J. Gutierrez, D. Sevilla, T. Shaska,Â
Lecture Notes Ser. Comput., 13, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, 109–123. https://doi.org/10.1142/9789812701640%5C_0009Â
2005-2: Hyperelliptic curves with reduced automorphism group $A_5$, D. Sevilla, T. Shaska,
Appl. Algebra Engrg. Comm. Comput. 18 3--20 (2007)  https://doi.org/10.1007/s00200-006-0030-9Â
2005-1: Genus 2 curves that admit a degree 5 map to an elliptic curve, K. Magaard, T. Shaska, H. Volklein,
Forum Math. 21 547--566 (2009)  https://doi.org/10.1515/FORUM.2009.027  Â
2004-3: Invariants of binary forms, V. Krishnamoorthy, T. Shaska, H. Volklein,
Dev. Math., 12, Springer, New York, 2005, 101–122.Â
2004-2:Â Genus two curves covering elliptic curves: a computational approach,
Lecture Notes Ser. Comput., 13, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, 206–231.Â
2004-1: Galois groups of prime degree polynomials with nonreal roots, A. Bialostocki, T. Shaska,
Lecture Notes Ser. Comput., 13, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005, 243–255.Â
2003-4: Computational algebra and algebraic curves,
SIGSAM Bull. 37, 117--124Â (2003)Â https://doi.org/10.1145/968708.968713Â Â Â
2003-3: Hyperelliptic curves with extra involutions, J. Gutierrez, T. Shaska,Â
LMS J. Comput. Math. 8 102--115 (2005) https://doi.org/10.1112/S1461157000000917 Â
2003-2: Some special families of hyperelliptic curves, T. Shaska,
J. Algebra Appl. 3 75--89 (2004) https://doi.org/10.1142/S0219498804000745 Â
2003-1: On the generic curve of genus 3, T. Shaska, J. Thompson,
Contemp. Math., Contemporary Math., 369, AMS, Providence, RI, 2005 https://doi.org/10.1090/conm/369/06814Â
2002-3: Determining the automorphism group of a hyperelliptic curve, (ISSAC 2003)
Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, 248–254. (ACM), 2003 https://doi.org/10.1145/860854.860904Â
2002-2: Computational aspects of hyperelliptic curves, Lecture Notes Ser. Comput., 10, World Scientific Publishing Co., Inc., River Edge, NJ, 2003, 248–257.Â
2002-1: Genus 2 curves with (3,3)-split Jacobian and large automorphism group, (ANTS 2003)
Lecture Notes in Comput. Sci., 2369, Springer-Verlag, Berlin, 2002, 205–218. https://doi.org/10.1007/3-540-45455-1%5C_17 math/0201008
2001-2: The locus of curves with prescribed automorphism group, K. Magaard, T. Shaska, S. Shpectorov, H. Volklein,
Sürikaisekikenkyüsho K\B{o}kyüroku 112--141 (2002) math/0205314
2001-1: Genus 2 fields with degree 3 elliptic subfields,
Forum Math. 16Â 263--280Â (2004)Â https://doi.org/10.1515/form.2004.013Â math/0109155
2001-0: Curves of genus two covering elliptic curves,Â
Thesis (Ph.D.)--University of Florida pg.72 (2001).
2000-2: Elliptic subfields and automorphisms of genus 2 function fields, T. Shaska, H. Volklein;
Algebra, arithmetic and geometry with applications (Abhyankar's 70th birthday), West Lafayette, IN, 2000, 703–723, Springer-Verlag, Berlin, (2004) math/0107142Â
2000-1: Curves of genus 2 with (n,n)-decomposable Jacobians, Â
J. Symbolic Comput. 31, 603--617, (2001). https://doi.org/10.1006/jsco.2001.0439  math/0312285Â
A. Malmendier
E. Shaska
A. Clingher
H. Völklein
K. Magaard
S. Shpectorov
E. Previato
L. Beshaj
J. Gutierrez
V. Ustimenko
R. Donagi
W. C. Huffman
M. Jarden
G. Frey
S. Salami
J. Mello
R. Hidalgo
A. Obus
E. Cotterill
I. Darago
C. Garay López
C. Han
G. Hiss
C. Shor
A. Elezi
G. Wijesiri
R. Sanjeewa
D. Joyner
S. Quispe
D. Sevilla
E. Zhupa
E. Badr
A. Bialostocki
F. Thompson
A. Broughton
A. Wootton
M. Izquierdo
S. Otake
S. Kruk